[1] A. Ardakani et al, “VLSI Implementation of Deep Learning Neural Network Using Integral Stochastic Computing,” IEEE Trans. Very Large Scale Integration System, vol. 25, iss. 10, pp. 2688-2699, Feb. 2017
[2] M. Walker, P. Hasler, and L. Akers, “CMOS neural network for pattern association,” IEEE Micro, vol. 9, no. 5, pp. 68-71, Oct. 1989
[3] B. V. Benjamin et al, “Neurogrid: A mixed-analog-digital multichip system for large-scale neural simulations,” Proc. IEEE, vol. 102, no.5, pp.-699-716, Apr. 2014
[4] P. A. Merolla et al, “A million spiking- neuron integrated circuit with a scalable communication network and interface,” Science, vol. 345, no. 6197, pp 668-673, Aug. 2014
[5] P. M. Solomon, “Device Innovation and Material Challenges at the Limit of CMOS Technology,” Annu. Rev. Mater. Sci., vol. 30, pp. 681-697, Aug. 2000
[6] [6] T. P. Brđanin and B. Dokić, “Strained Silicon Layer in CMOS Technology,” Electronics, vol. 18, no. 2, pp. 63-69, Dec. 2014
[7] L. O. Chua, “Memristor – the missing circuit element,” IEEE Trans. Circuit Theory, vol. CT-18, no. 5, pp. 507-519, Sep. 1971.
[8] D. B. Strukov, G. S. Sinder, D. R. Stewart, and R. S. Williams, “The missing memristor found,” Nature, vol. 453, pp. 80-83, May 2008.
[9] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, “Nanoscale memristor device as synapse in neuromorphic systems,” Nano Letters, vol. 10, no. 4, pp. 1297-1301, Mar. 2010.
[10] C. Wang, W. He, Y. Tong, and R. Zhao, “Investigation and Manipulation of Defferent Analog behaviors of Memristor as Electronic Synapse for Neuromorphic Applications,” Scienticfic Report, vol. 6, no. 22970, pp. 1-9, Mar, 2016
[11] R. S. Williams, “How we found the missing memristor,” IEEE Spectrum, vol. 45, iss. 12, pp. 28-35, Dec. 2008.
[12] S. N. Truong and K. S. Min “New memristor-based crossbar array architecture with 50-% area reduction and 48-% power saving for matrix-vector multiplication of analog neuromorphic computing,” Journal of Semiconductor Technology and Science, vol. 14, no. 3, pp. 356-363, Jun. 2014.
[13] J. Liang and H. S. P. Wong, “Cross-point memristor array without cell selector – device characteristics and data storage pattern dependencies,” IEEE Trans. Electron Device, vol. 57, no. 10, pp. 2531-2538, Oct. 2010.
[14] E. Linn, R. Rosezin, C. Kügeler, and R. Waser “Complementary resistive switches for passive nanocrossbar memories,” Nature Materials,.vol. 9, pp. 403-406, May 2010
[15] S. H. Shin, S. D. Byeon, J. S. Song, S. N. Truong, H. S. Mo, D. J. Kim, and K. S. Min, “Dynamic reference scheme with improved read voltage margin for compensating cell-position and back ground-pattern dependencies in pure memristor array,” Journal of Semiconductor Technology and Science, vol.15, No.6, Dec. 2015
[16] S. N. Truong K. V. Pham, W. S. Yang, S. H. Shin, K. Pedrotti, and K. S. Min, “New pulse amplitude modulation for fine tuning of memristor synapses,” Microelectronics Journal, vol. 55, pp. 162-168, 2016
[17] S. N. Truong, S. J. Ham, and K. S. Min “Neuromorphic crossbar circuit with nanoscale filamentary-switching binary memristors for speech recognition,” Nanoscale Research Letters, vol. 9 no. 629, pp. 1-9, Nov. 2014.
|